
Algebraic Geometry Lecture 7

1. Uniformisers

A few months ago in Dan’s lecture we defined the order function that tells you
whether a function has a zero or pole at a prime divisor (irreducible subvariety of
codimension 1), and of what order. Given a prime divisor P of our variety and a
rational function f ∈ k(V ) we defined

ordP (f) =


n > 0 if f has a zero of order n at P ,

0 if f 6= 0,∞ at P ,
−n < 0 if f has a pole of order n at P .

Theorem 1. The function ordP : k(V )→ Z ∪ {∞} is surjective.

Defn. Given a prime divisor P of V (k) we say a rational function t ∈ k(C) is a
uniformiser of P if ordP (t) = 1.

Uniformisers exist by the theorem, since the ordP map is surjective there must
be a rational function of order 1. The theorem does not ensure uniqueness though
and in general there are many choices we can take. Geometrically in the case of
curves it is safe to think of uniformisers as being lines through the point P that are
not tangential to the curve at that point.

Example Take the variety V : y2 − x3 − 3x2 − 2x = 0 over Q.

Consider the two points P1 = (1,
√

6) and P2 = (−2, 0) in V (Q). For a uniformiser
at P1 we may take

t1 : x− 1.
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This has a simple zero at P1 so it is a uniformiser there.

At P2 we may be tempted to try

t2 : x + 2.

This does have a zero at the point, so ordP2(t2) > 1, but we should note that

y2 − x3 − 3x2 − 2x = 0

⇒ x(x + 1)(x + 2) = y2

⇒ x + 2 =
y2

x(x + 1)
.

So

ordP2(x + 2) = ordP2

(
y2

x(x + 1)

)
= ordP2(y2)− ordP2(x)− ordP2(x + 1)
= 2− 0− 0
= 2.

So t2 is not a uniformiser. But if we use t′2 : y then we find that this rational
function has a simple zero at P2 so is a uniformiser there.

2. Divisors

Recall from Dan’s lecture that, given a variety V over a field k, a divisor is just
a formal sum of irreducible subvarieties of codimension 1 in V (k) with coefficients
in Z. So in particular if V is a curve then divisors will be formal sums of points.
The group of divisors is denoted Div(V ).

Example If V : y2 − x3 − 3x2 − 2x = 0 over Q then

(−2, 0) + 4(1,
√

6)− 19(17, 3
√

646) ∈ Div(V ).

If we go through each subvariety in a divisor and replace the coordinates with
their conjugates then we would expect to get a different divisor. If we in fact get
the same divisor then the divisor is called k-rational. The subgroup of k-rational
divisors is denoted Div(V ).

Example Suppose that

(2, 0, 1) + 4(1,
√

7, 2− 2
√

7) + 4(1,−
√

7, 2 + 2
√

7) ∈ Div(V )

for some variety V . Then if we apply the embedding
√

7→ −
√

7 then we get

(2, 0, 1) + 4(1,−
√

7, 2 + 2
√

7) + 4(1,
√

7, 2− 2
√

7).

But this is our original point, so this point is Q-rational.

Recall: Using the order function we may associate a divisor to each rational
function f by

div(f) =
∑

P⊂V (k)
P prime divisor

ordP (f)P.

These divisors are called principal divisors.
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3. Differentials

Motivation: In linear algebra you study vector spaces which are spaces of vectors.
But vectors themselves aren’t especially interesting, so you investigate maps and
linear forms. In Algebraic Geometry we have varieties, which in themselves have
limited appeal, so we investigate maps between them e.g. rational functions, and
linear forms, which will be our differentials.

Defn. The space of differentials on a variety V is a vector space over the function
field k(V ) with the ‘vectors’ being symbols dx for x ∈ k(V ) subject to the relations

(1) d(x + y) = dx + dy
(2) d(xy) = xdy + ydx
(3) da = 0 for any a ∈ k.

The space of differentials is denoted ΩV .

Theorem 2. If V is an n-dimensional variety then ΩV is an n-dimensional vector
space over k(V ).

Example What is d

(
x

y

)
? By property (ii) we get

d

(
x

y

)
= xd

(
1
y

)
+

1
y
dx.

So the question becomes, what is d

(
1
y

)
? By properties (iii) and (ii) we get

0 = d1

= d

(
y

y

)
= yd

(
1
y

)
+

1
y
dy,

so that

d

(
1
y

)
= − 1

y2
dy.

Thence

d

(
x

y

)
=

ydx− xdy

y2
.

We now want to extend our notion of the order of a function at a point to cover
differentials. To do this we need higher dimensional differentials. The differentials
we’ve seen so far have been one-dimensional (though they may form a higher dimen-
sional vector space). To get r-dimensional differentials we need to take the wedge
product of them. This is just a formal product that allows us to “multiply” two
differentials. The wedge product of two differentials dx and dy is denoted dx ∧ dy,
and it satisfies the following rules for dx, dy, dz ∈ ΩV :

• dx ∧ dy = −dy ∧ dx
• dx ∧ (dy + dz) = dx ∧ dy + dx ∧ dz.
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Using this product we can define the space of r-dimensional differentials, Ωr
V as the

space of products
dx1 ∧ dx2 ∧ · · · ∧ dxr

where dxi are 1-dimensional differentials. If V has dimension n then Ωr
V has di-

mension
(

n

r

)
over k(V ).

If we have an n-dimensional differential ω on an n-dimensional variety then we
can define its order and a corresponding divisor. It hinges on the fact that the

dimension of Ωn
V will be

(
n

n

)
= 1, so we can write ω in the form

ω = fdu1 ∧ · · · ∧ dun

for some f ∈ k(V ). We then define

ordP (ω) = ordP (f).

This is well defined despite the apparent ambiguity in choosing a basis vector. Using
this notion we can go on to define the divisor of a differential as

div(ω) =
∑

Prime divisors P

ordP (ω)P.

These divisors are called the canonical divisors. It turns out that these divisors
are invariant under conjugation, so they are in Div(V ). Moreover, the divisors of
any two differentials differ by a principal divisor. Recall that we defined the divisor
class group to be the group of k-rational divisors modulo the principal divisors. So
all the canonical divisors lie in the same equivalence class of the divisor class group,
known as the canonical class.

Defn. We say a differential ω ∈ ΩV is:

(1) regular (or holomorphic) if ordP (ω) > 0 for every prime divisor P ;
(2) non-vanishing if ordP (ω) 6 0 for every prime divisor P .

In the case of curves things simplify somewhat and any one-dimensional differ-
ential ω can be written in the form

ω = fdt

for a rational function f and a uniformiser t.

Example Calculate ordP (dx) at P = (−2, 0) for

C : y2 − x3 − 3x2 − 2x = 0.

Recall we found that y was a uniformiser for C at P . So if we can write dx in the
form dx = fdy then ordP (dx) = ordP (f). But:

x3 + 3x2 + 2x = y2

(3x2 + 6x + 2)dx = 2ydy

dx =
2y

3x2 + 6x + 2
dy.
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So

ordP (dx) = ordP

(
2y

3x2 + 6x + 2

)
= ordP (2) + ordP (y)− ordP (3x2 + 6x + 2)
= 0 + 1− 0
= 1.


